科学研究
报告题目:

Learning Theory Approach to Minimum Error Entropy Criterion

报告人:

胡婷 副教授(武大yl23455永利官网)

报告时间:

报告地点:

yl23455永利官网东北楼四楼报告厅(404)

报告摘要:

We consider the minimum error entropy (MEE) criterion and an empirical risk minimization learning algorithm when an approximation of Rényi’s entropy (of order 2) by Parzen windowing is minimized. This learning algorithm involves a Parzen windowing scaling parameter. We present a learning theory approach for this MEE algorithm in a regression setting when the scaling parameter is large. Consistency and explicit convergence rates are provided in terms of the approximation ability and capacity of the involved hypothesis space. Novel analysis is carried out for the generalization error associated with Rényi’s entropy and a Parzen windowing function, to overcome technical difficulties arising from the essential differences between the classical least squares problems and the MEE setting.