科学研究
报告题目:

High accurate monotonicity-preserving Semi-Lagrangian scheme for Vlasov-Poisson simulations

报告人:

杨畅 教授(哈尔滨工业大学)

报告时间:

报告地点:

yl23455永利官网东北楼四楼报告厅 (404)

报告摘要:

In this work, we study a high accurate monotonicity-preserving (MP) Semi-Lagrangian scheme for Vlasov-Poisson simulations. The classical Semi-Lagrangian scheme is known to be high accurate and free from CFL condition, but it does not satisfy local maximum principle. To remedy this drawback, using the conservative form of the Semi-Lagrangian scheme, we recast existing MP schemes for the numerical flux in a common framework, and then substitute the local extremum by some "better" guess, in order to avoid as much as possible loss of accuracy and clipping near extrema, while keeping the monotonicity on monotone portions. With the limiter, on the one hand, the scheme keeps the good properties of the unlimited scheme: it is conservative, free from CFL condition and high accurate. On the other hand, for locally monotonic data, the monotonicity of the solution is preserved. Numerical tests are made on free transport equation and Vlasov-Poisson system to illustrate the robustness of our method.